

capture 4 measurements sequentially: $m_{\tilde{g}}$ $m_{\pi/2}$ m_{π} $m_{\tilde{g}_{\pi/2}}$

intensity phase

$s(t) = \sin(\omega t + \theta) \quad 0, \pi/2, \pi, 3\pi/2$ Conventional Method

 $\left(m_{\frac{3\pi}{2}}-m_{\frac{\pi}{2}}\right)$ $A = \frac{1}{2}\sqrt{(m_0 - m_\pi)^2 + (m_{\frac{3\pi}{2}} - m_{\frac{\pi}{2}})^2}$ $\phi = \tan^{-1}$ $m_0\!-\!m_\pi$ • requires 4 images • susceptible to motion blur • slow

calculate amplitude and phase

Off-axis Holography sensor $E_o(x,y)e^{j\phi(x,y)}$ object wave $e(t) = \sin \omega t$ $\overline{}$ $\mathbf C$ camera signal obj e $s(t) = \sin(\omega t + \theta)$ reference beam
 $E_re^{-jkx\sin(\theta)}$ $s(t)r(t)dt = \frac{1}{2}cos(\theta - \phi)$ Snapshot Method (Proposed) $s(t) = \sin(\omega t + i\theta)$ kx define ToF hologram as $\left[\mathcal{I}(x,y) = A(x,y)e^{-j\phi} \right]$ measurement becomes: $m_{kx} = \frac{A(x,y)}{2} \cos(kx - \phi(x,y))$ $=\frac{A(x,y)}{4}[e^{j(kx-\phi)}+e^{-j(kx-\phi)}]$ $\mathfrak{F}_{m_{kx}}(\omega_x,\omega_y)=\frac{1}{4}(\mathcal{I}(\omega_x-k,\omega_y)+\mathcal{I}^*(k-\omega_x,\omega_y)).$ shifted hologram shifted twin δ = \longrightarrow \longrightarrow \longrightarrow take FFT of measurement, filter the twin, frequency shift to center • inspired by off-axis holography • embeds ToF hologram in Fourier space • 4x lower bandwidth

The authors thank Jeremy Klotz for his help with the hardware prototype. This research is partially supported by a Burke Research Initiation Award.

